news center
新聞中心
新聞動態(tài)
NEWS CENTER
?
聲發(fā)射的概念
材料中局域源快速釋放能量產(chǎn)生瞬態(tài)彈性波的現(xiàn)象稱為聲發(fā)射(Acoustic Emission, 簡稱AE) ,有時也稱為應(yīng)力波發(fā)射。材料在應(yīng)力作用下的變形與裂紋擴(kuò)展,是結(jié)構(gòu)失效的重要機(jī)制。這種直接與變形和斷裂機(jī)制有關(guān)的源,被稱為聲發(fā)射源。近年來,流體泄漏、摩擦、撞擊、燃燒等與變形和斷裂機(jī)制無直接關(guān)系的另一類彈性波源,被稱為其它或二次聲發(fā)射源。
聲發(fā)射是一種常見的物理現(xiàn)象,各種材料聲發(fā)射信號的頻率范圍很寬,從幾Hz的次聲頻、20 Hz~20K Hz的聲頻到數(shù)MHz的超聲頻;聲發(fā)射信號幅度的變化范圍也很大,從10-13m的微觀位錯運(yùn)動到1m量級的地震波。如果聲發(fā)射釋放的應(yīng)變能足夠大,就可產(chǎn)生人耳聽得見的聲音。大多數(shù)材料變形和斷裂時有聲發(fā)射發(fā)生,但許多材料的聲發(fā)射信號強(qiáng)度很弱,人耳不能直接聽見,需要藉助靈敏的電子儀器才能檢測出來。用儀器探測、記錄、分析聲發(fā)射信號和利用聲發(fā)射信號推斷聲發(fā)射源的技術(shù)稱為聲發(fā)射技術(shù),人們將聲發(fā)射儀器形象地稱為材料的聽診器。
聲發(fā)射技術(shù)發(fā)展概述
聲發(fā)射和微震動都是自然界中隨時發(fā)生的自然現(xiàn)象,盡管無法考證人們何時首次聽到聲發(fā)射,但逐如折斷樹技、巖石破碎和折斷骨頭等的斷裂過程無疑是人們最早聽到的聲發(fā)射信號。可以十分肯定地推斷“錫嗚”是人們首次觀察到的金屬中的聲發(fā)射現(xiàn)象,因?yàn)榧冨a在塑性形變期間機(jī)械欒晶產(chǎn)生可聽得到的聲發(fā)射,而銅和錫的冶煉可追朔到公元前3700年。
現(xiàn)代的聲發(fā)射技術(shù)的開始以Kaiser五十年代初在德國所作的研究工作為標(biāo)志。他觀察到銅、鋅、鋁、鉛、錫、黃銅、鑄鐵和鋼等金屬和合金在形變過程中都有聲發(fā)射現(xiàn)象。他最有意義的發(fā)現(xiàn)是材料形變聲發(fā)射的不可逆效應(yīng)即:“材料被重新加載期間,在應(yīng)力值達(dá)到上次加載最大應(yīng)力之前不產(chǎn)生聲發(fā)射信號”。現(xiàn)在人們稱材料的這種不可逆現(xiàn)象為“Kaiser效應(yīng)”。Kaiser同時提出了連續(xù)型和突發(fā)型聲發(fā)射信號的概念。
二十世紀(jì)五十年代末,美國人Schofield和Tatro經(jīng)大量研究發(fā)現(xiàn)金屬塑性形變的聲發(fā)射主要由大量位錯的運(yùn)動所引起[5], 而且還得到一個重要的結(jié)論, 即聲發(fā)射主要是體積效應(yīng)而不是表面效應(yīng)。Tatro進(jìn)行了導(dǎo)致聲發(fā)射現(xiàn)象的物理機(jī)制方面的研究工作, 首次提出聲發(fā)射可以作為研究工程材料行為疑難問題的工具, 并預(yù)言聲發(fā)射在無損檢測方面具有獨(dú)特的潛在優(yōu)勢。
二十世紀(jì)六十年代初,Green等人首先開始了聲發(fā)射技術(shù)在無損檢測領(lǐng)域方面的應(yīng)用, Dunegan首次將聲發(fā)射技術(shù)應(yīng)用于壓力容器方面的研究。在整個六十年代, 美國和日本開始廣泛地進(jìn)行聲發(fā)射的研究工作, 人們除開展聲發(fā)射現(xiàn)象的基礎(chǔ)研究外, 還將這一技術(shù)應(yīng)用于材料工程和無損檢測領(lǐng)域。美國于1967年成立了聲發(fā)射工作組,日本于1969年成立了聲發(fā)射協(xié)會。
二十世紀(jì)七十年代初, Dunegan等人于開展了現(xiàn)代聲發(fā)射儀器的研制,他們把實(shí)驗(yàn)頻率提高到100KHz-1MHz的范圍內(nèi), 這是聲發(fā)射實(shí)驗(yàn)技術(shù)的重大進(jìn)展, 現(xiàn)代聲發(fā)射儀器的研制成功為聲發(fā)射技術(shù)從實(shí)驗(yàn)室的材料研究階段走向在生產(chǎn)現(xiàn)場用于監(jiān)視大型構(gòu)件的結(jié)構(gòu)完整性創(chuàng)造了條件。
隨著現(xiàn)代聲發(fā)射儀器的出現(xiàn),整個七十年代和八十年代初人們從聲發(fā)射源機(jī)制、波的傳播到聲發(fā)射信號分析方面開展了廣泛和系統(tǒng)的深入研究工作。在生產(chǎn)現(xiàn)場也得到了廣泛的應(yīng)用,尤其在化工容器、核容器和焊接過程的控制方面取得了成功。Drouillard于1979年統(tǒng)計出版了1979年以前世界上發(fā)表的聲發(fā)射論文目錄, 據(jù)他的統(tǒng)計, 到1986年底世界上發(fā)表有關(guān)聲發(fā)射的論文總數(shù)已超過5000篇。
二十世紀(jì)八十年代初,美國PAC公司將現(xiàn)代微處理計算機(jī)技術(shù)引入聲發(fā)射檢測系統(tǒng), 設(shè)計出了體積和重量較小的第二代源定位聲發(fā)射檢測儀器, 并開發(fā)了一系列多功能高級檢測和數(shù)據(jù)分析軟件, 通過微處理計算機(jī)控制, 可以對被檢測構(gòu)件進(jìn)行實(shí)時聲發(fā)射源定位監(jiān)測和數(shù)據(jù)分析顯示。由于第二代聲發(fā)射儀器體積和重量小易攜帶,從而推動了八十年代聲發(fā)射技術(shù)進(jìn)行現(xiàn)場檢測的廣泛應(yīng)用,另一方面,由于采用286及更高級的微處理機(jī)和多功能檢測分析軟件,儀器采集和處理聲發(fā)射信號的速度大幅度提高,儀器的信息存儲量巨大,從而提高了聲發(fā)射檢測技術(shù)的聲發(fā)射源定位功能和缺陷檢測準(zhǔn)確率。
進(jìn)入九十年代,美國PAC公司、美國DW公司、德國Vallen Systeme公司和我國的聲華興業(yè)科技有限公司先后分別開發(fā)生產(chǎn)了計算機(jī)化程度更高、體積和重量更小的第三代數(shù)字化多通道聲發(fā)射檢測分析系統(tǒng),這些系統(tǒng)除能進(jìn)行聲發(fā)射參數(shù)實(shí)時測量和聲發(fā)射源定位外,還可直接進(jìn)行聲發(fā)射波形的觀察、顯示、記錄和頻譜分析。
我國于二十世紀(jì)七十年代初首先開展了金屬和復(fù)合材料的聲發(fā)射特性研究,八十年代中期聲發(fā)射技術(shù)在壓力容器和金屬結(jié)構(gòu)的檢測方面得到應(yīng)用。發(fā)射檢測儀已在制造、信號處理、金屬材料、復(fù)合材料、磁聲發(fā)射、巖石、過程監(jiān)測、壓力容器、飛機(jī)等領(lǐng)域開展了廣泛的應(yīng)用。
我國于1978年在中國無損檢測學(xué)會成立了聲發(fā)射專業(yè)委員會,并于1979年在黃山召開了第一屆全國聲發(fā)射學(xué)術(shù)會議,近年來已固定每兩年召開一次學(xué)術(shù)會議,到目前為止已召開了十一屆。
聲發(fā)射基本檢測原理
從聲發(fā)射源發(fā)射的彈性波最終傳播到達(dá)材料的表面,引起可以用聲發(fā)射傳感器探測的表面位移,這些探測器將材料的機(jī)械振動轉(zhuǎn)換為電信號,然后再被放大、處理和記錄。固體材料中內(nèi)應(yīng)力的變化產(chǎn)生聲發(fā)射信號, 在材料加工、處理和使用過程中有很多因素能引起內(nèi)應(yīng)力的變化,如位錯運(yùn)動、孿生、裂紋萌生與擴(kuò)展、斷裂、無擴(kuò)散型相變、磁疇壁運(yùn)動、熱脹冷縮、外加負(fù)荷的變化等等。人們根據(jù)觀察到的聲發(fā)射信號進(jìn)行分析與推斷以了解材料產(chǎn)生聲發(fā)射的機(jī)制。
聲發(fā)射檢測的主要目的是:①確定聲發(fā)射源的部位;②分析聲發(fā)射源的性質(zhì);③確定聲發(fā)射發(fā)生的時間或載荷;④評定聲發(fā)射源的嚴(yán)重性。一般而言,對超標(biāo)聲發(fā)射源,要用其它無損檢測方法進(jìn)行局部復(fù)檢,以精確確定缺陷的性質(zhì)與大小。
聲發(fā)射技術(shù)的特點(diǎn)
聲發(fā)射檢測方法在許多方面不同于其它常規(guī)無損檢測方法,其優(yōu)點(diǎn)主要表現(xiàn)為:
(1) 聲發(fā)射是一種動態(tài)檢驗(yàn)方法,聲發(fā)射探測到的能量來自被測試物體本身,而不是象超聲或射線探傷方法一樣由無損檢測儀器提供;
(2) 聲發(fā)射檢測方法對線性缺陷較為敏感,它能探測到在外加結(jié)構(gòu)應(yīng)力下這些缺陷的活動情況,穩(wěn)定的缺陷不產(chǎn)生聲發(fā)射信號;
(3) 在一次試驗(yàn)過程中,聲發(fā)射檢驗(yàn)?zāi)軌蛘w探測和評價整個結(jié)構(gòu)中缺陷的狀態(tài);
(4) 可提供缺陷隨載荷、時間、溫度等外變量而變化的實(shí)時或連續(xù)信息,因而適用于工業(yè)過程在線監(jiān)控及早期或臨近破壞預(yù)報;
(5) 由于對被檢件的接近要求不高,而適于其它方法難于或不能接近環(huán)境下的檢測,如高低溫、核輻射、易燃、易爆及極毒等環(huán)境;
(6) 對于在役壓力容器的定期檢驗(yàn),聲發(fā)射檢驗(yàn)方法可以縮短檢驗(yàn)的停產(chǎn)時間或者不需要停產(chǎn);
(7) 對于壓力容器的耐壓試驗(yàn),聲發(fā)射檢驗(yàn)方法可以預(yù)防由未知不連續(xù)缺陷引起系統(tǒng)的災(zāi)難性失效和限定系統(tǒng)的最高工作壓力;
(8) 由于對構(gòu)件的幾何形狀不敏感,而適于檢測其它方法受到限制的形狀復(fù)雜的構(gòu)件。
由于聲發(fā)射檢測是一種動態(tài)檢測方法,而且探測的是機(jī)械波,因此具有如下的特點(diǎn):
(1) 聲發(fā)射特性對材料甚為敏感,又易受到機(jī)電噪聲的干擾,因而,對數(shù)據(jù)的正確解釋要有更為豐富的數(shù)據(jù)庫和現(xiàn)場檢測經(jīng)驗(yàn);
(2) 聲發(fā)射檢測,一般需要適當(dāng)?shù)募虞d程序。多數(shù)情況下,可利用現(xiàn)成的加載條件,但有時,還需要特作準(zhǔn)備;
(3) 聲發(fā)射檢測目前只能給出聲發(fā)射源的部位、活性和強(qiáng)度,不能給出聲發(fā)射源內(nèi)缺陷的性質(zhì)和大小,仍需依賴于其它無損檢測方法進(jìn)行復(fù)驗(yàn)。